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1. Introduction 
The mathematics learning outcomes in South 

Africa have been persistently low, especially 
in mathematics and science. The results for the 
Grade 12 mathematics national examination for 
the years 2015 to 2019 reveal that less than a 
quarter of the learners passed at the 50% level 
(South African Department of Basic Education 
[SADBE], 2019; 2020). Furthermore, the number 
of learners who passed with 50% or more in the 
Grade 12 mathematics examination in 2015 
made up just 5% of the cohort who started school 
in 2004 (Bansilal, 2017). These low numbers 
of passes in mathematics in the country have a 
constraining effect on the economy by limiting 
the number of people who can access careers 
in mathematics and science. There are many 
reasons for the poor outcomes, one of which is 
teacher’s knowledge of the content they teach. 
Teachers play an important role in helping 
students achieve positive outcomes since they 
play a  central role in mediating the content 
with their learners.   The well-known McKinsey 
report summarised this position by stating that 
the quality of an education system cannot be 
exceeded by the quality of the teachers in the 
system (Barber & Mourshed, 2007). 

It is important for professional development 
programmes to also focus on developing the 
mathematics content knowledge of practising 
teachers (James et al., 2015). This study emanated 
from a professional development programme 
designed to help teachers improve their 
understanding and teaching of the mathematics 
they teach. In this small-scale study, I look at an 
assessment instrument in trigonometry that was 
used with in-service mathematics teachers, with 
the aim of using Rasch analysis to improve the 
functioning of the items. The  research questions 
that underpin this study are:

1. How can an application of the Rasch 
Measurement Model to an assessment 
instrument contribute to an improved 
scoring rubric?

2. To what extent does the empirical ordering 
of the items described in terms of the 
item difficulty locations correspond to 
the increasing cognitive complexity of 
the items predicted by the education 
department assessment taxonomy

This study focuses on trigonometry, which 
is a branch of mathematics that brings together 
concepts in algebra, geometry and graphs and 
has applications in many areas of science and 
mathematics. It is hoped that this study can add 
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knowledge to the area of teacher knowledge of 
trigonometry while providing insights about 
challenges in learning trigonometry generally. 

2. Literature review 
Many studies focusing on the content 

knowledge of mathematics teachers. have 
been influenced by Shulman’s description 
of pedagogical content knowledge, which is 
described as including: 

… for the most regularly taught topics 
in one’s subject area, the most useful 
forms of representation of those 
ideas, the most powerful analogies, 
illustrations, examples, explanations, and 
demonstrations - in a word, the ways of 
representing and formulating the subject 
that make it comprehensible to others. 
Since there are no single most powerful 
forms of representation, the teacher must 
have at hand a veritable armamentarium 
of alternative forms of representation 
(Shulman, 1986, p.9). 

Clearly, finding ways of formulating the 
concept so that it is comprehensible to others 
requires a sound understanding of mathematics, 
and this notion of pedagogic content knowledge 
underscores how important it is for mathematics 
teachers to have a deep and connected knowledge 
of the mathematics they teach. However, many 
studies suggest that mathematics teachers, 
particularly in South Africa, struggle with the 
content they need to teach (Bansilal et al., 2014; 
Mudaly & Moore-Russo, 2011; Taylor, 2011).

Shulman’s (1986) description highlights the 
need for teachers to have a robust knowledge 
of different representations of concepts. It is 
crucial that teachers are able to draw upon 
various representations of a concept. Moore-
Russo and Viglietti (2012) explained that it is 
through mutual interaction between a person’s 
mental representation and other forms of 
physical representation that a person comes 
to understand a concept. People with a sound 
understanding of a concept should know a variety 
of representations to choose the most appropriate 
one for a particular situation to solve problems, 
illustrate properties, or explore relationships 
(Moore-Russo & Viglietti, 2012). Working with 

various representations contributes to greater 
possibilities for mathematical activities across 
the representations. 

A mathematical representation of an object 
is linked to an underlying semiotic system, 
which is characterized by a set of signs, a set 
of rules that governs the production and use of 
the signs and an associated meaning structure 
which is based on the relationships between 
the signs and objects within the system (Ernest, 
2006). Duval (2006) notes that semiotic systems 
of representation are used to label or identify 
mathematical objects or communicate and allow 
one to work on a mathematical object. The author 
distinguishes two types of transformations of 
semiotic representations that can occur during 
any mathematical activity (Duval, 2006). 
The first type, called treatments, involves 
transformations from one semiotic representation 
to another within the same system or register 
(Duval, 2006, p. 110). An example of a treatment 
is transforming the trigonometric expression 
sin2x into 2sinx.cosx, which is derived from 
relationships within the trigonometric register. 
A second type of transformation is that of a 
conversion, which involves changing the system 
of representation while preserving the reference 
to the same object (Duval, 2006). An example of 
a conversion is expressing the function y = cos 
x as a graph on the coordinate system. Duval 
(2006, p. 107) contends that the ‘ability to change 
from one representation system to another is 
very often the critical threshold for progress in 
learning.  Duval’s contention is that treatments 
command more attention in mathematics, 
whilst it is conversions which cause the greatest 
difficulties in mathematics. He argues that 
conversions come in only because we need 
to choose ‘the register in which the necessary 
treatments can be carried out most economically 
or most powerfully’. Another reason put forward 
for the use of conversions is that they provide “a 
second register to serve as a support or guide 
for the treatments being carried out in another 
register” (Duval, 2006, p. 127).

Many problems in trigonometry require the 
coordination of more than one representational 
system, and often, a solution cannot be reached 
if one is confined to activities that are exclusive 
to one system only (Ubah & Bansilal, 2019). 
Although the move to a different representation 
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is not essential in all situations, a shift between 
different representations is often crucial to arrive 
at a solution to a problem. Duval (2006, p.105) 
argued that an important aspect of mathematical 
thinking is that of coordinating two registers 
of representation simultaneously when he 
commented that “the characteristic feature 
of mathematical activity is the simultaneous 
mobilization of at least two registers of 
representation with  the possibility at any moment 
of changing from one to another.”

3. Rasch Measurement theory 
Rasch measurement theory (RMT) provides 

a useful framework for analyzing data from 
educational, psychological and medical 
assessments. Central to RMT is the idea that 
the probability of a test-taker answering an item 
correctly depends on both the difficulty of the 
item and the proficiency of the test-taker in the 
construct being assessed. One of the advantages 
of using a Rasch analysis is that it computes 
the proficiency of the test-taker and the item 
difficulty on one scale. 

The Rasch simple logistic model (SLM) 
for dichotomous items is given in Equation 1 
(Andrich & Marais, 2012). In RMT the equation 
which relates the ability of learners and the 
difficulty of items is given by the logistic function:

   P {Xvi= 1} = 		  [1]

 This function expresses the probability of a 
person v, with ability βv responding successfully 
on a dichotomous item I, with two ordered 
categories, designated as 0 and 1. Here P is the 
probability of a correct answer; Xvi is the item 
score variable allocated to a response of person v, 
on dichotomous item i; βv is the ability of person 
v and δi is the difficulty of item i.

The item characteristic curve (ICC) depicted 
in Figure 1 shows the alignment of item difficulty 
and person proficiency. Teachers are represented 
on the horizontal axis from low proficiency (to 
the left, towards -5) to high proficiency (to the 
right towards +3). The expected value for correct 
response is represented by the vertical axis from 
0 to 1. The item is located at a difficulty level of 
-0.394 logits. 

Figure 1. Item characteristic curve for an item 
located at -0.394 logits.

The corresponding ICC in Figure 1 shows 
that a person located at the proficiency location 
of the item difficulty (-0.394) has a probability 
of 0.5 (expected value of 0.5) of getting the item 
correct.

A Rasch analysis also generates category 
probability curves for each item, as shown in 
Figure 2 for the same item appearing in Figure 
1. The curve corresponding to the category of 1 
is identical to that of the ICC curve (Figure 1). 
In addition, the figure also has a curve which 
denotes the probability of a person scoring 0. 
The location of the item is identified as the point 
on the ability scale where the probability curves 
0 and 1 intersect. At this point, the probability 
of a response of either 0 or 1 is equally likely. 
Because it is a dichotomous item, the person 
who is located at -0.394 logits (item difficulty) 
has a probability of 0.5 of either response. The 
probability of a correct response decreases as 
proficiency decreases and increases as proficiency 
increases around this point. 

Equation 1 is suitable for items which are 
dichotomous in nature and has been extended, as 
shown in Equation 2, to represent the situation 
when items may be polytomous. Since the 
response data in this study is polytomous, we 
use the Partial Credit Model (PCM), which 
analyses the responses recorded in two or more 
ordered categories. The equation of the model is 
expressed in Equation 2 ( Andrich, 1978). 

P{Xvi= 1} =   Equation 2

Which expresses the probability of a person of 
ability βv being classified in a category x in a test 
item of difficulty δi, with m+1 ordered categories 
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where x ϵ {1,2, …, m} and  are the thresholds. 
The term threshold defines the transition between 
two adjacent categories, for example, between 
scoring 0 and 1 (τ1), or scoring between 1 and 2 
(τ2). This is illustrated below in Figure 3, which 
shows the category curves for Item 6.1.2.

In Figure 3, there are three category curves 
corresponding to the probabilities of obtaining 
a score of 0, 1 or 2. The thresholds, and the 
categories they define, are naturally ordered in 
the sense that the threshold defining the two 
higher categories of achievement is of greater 
difficulty than the threshold defining the two 
lower categories of achievement, The first 
threshold (τ1), which represents the point where a 
score of 1 becomes more likely than a score of 0, 
is about -0.8 logits. The second threshold, where 
a score of 2 becomes more likely than a score of 
1, is approximately -0.2 logits. These thresholds 
show that progressively more ability is required 
to score a 0, 1 or 2, respectively, on this item. 

4. Methodology 
The participants in the study were part of 

a group of high school mathematics teachers 
who were enrolled in an in-service programme. 

There were 168 participants whose records 
were captured for this study. The items in the 
data collection instrument were drawn from a 
previous Grade 12 examination paper usually 
taken by school students. In this article, we focus 
on 16 items based on trigonometry to see how 
well those items worked as an assessment of 
proficiency in trigonometry as a whole. 

When data is analyzed, it is common practice 
to discuss how well the model fits the data. 
However, with respect to RMT, the requirement 
is that the data fit the model in order to claim 
measurement within the models’ framework. 
The fit statistics are used to help detect when the 
data does not fit the model as expected, and this 
allows us to diagnose some reasons for the misfit. 

The scores for the teachers in each of the 
items were recorded in Excel. The data were 
cleaned and then exported into RUMM 2030, 
where further analysis was undertaken. The 
Department of Education utilizes an assessment 
taxonomy to guide the design of assessments 
in mathematics. The taxonomy distinguishes 
between four cognitive levels of the items 
according to the Department of Basic Education 
(DoBE) assessment taxonomy. Table 1 presents a 
summary of these levels.

Each of the items was categorized into the four 
cognitive levels by three experts individually. 
The experts then discussed the categories until 
agreement about the item levels were agreed 
upon. Note that the classification of the items 
according to these taxonomy levels is not cast in 
stone and may be interpreted slightly differently 
by different people depending on the cohort of 
learners and the background. The details of the 
items with the original fit statistics, the location 
estimates, as the categorization according to 
the assessment taxonomy level of Table 1 are 
presented in Table 2.

5. Results
From the initial Rasch analysis, the summary 

statistics (Table 3), person-item location 
distribution (Figure 4) and person-item threshold 
distribution (Figure 5) were generated. Table 2 
presents the initial summary statistics, which 
shows the item mean as 0 (as set by the model) 

Figure 2. Category probability curve for an item 
located at -0.394 

Figure 3. Category probability curve for an item 
with two thresholds
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Table 1. Descriptors of each level of the assessment taxonomy used by the Department  
of Basic Education

Cognitive levels Description of skills to be demonstrated

(1)Knowledge Straight recall
Identification of the correct formula on the information sheet (no changing of the 
subject)
Use of mathematical facts
Appropriate use of mathematical vocabulary

(2)Routine 
Procedures

Estimation and appropriate rounding of numbers
Proofs of prescribed theorems and derivation of formulae
Identification and direct use of correct formula on the information
sheet (no changing of the subject)
Perform well-known procedures
Simple applications and calculations which might involve a few steps
Derivation from given information may be involved
Identification and use (after changing the subject) of the correct formula
Generally similar to those encountered in class 

(3)Complex 
Procedures

Problems involve complex calculations and/or higher-order reasoning
There is often not an obvious route to the solution
Problems need not be based on a real-world context
Could involve making significant connections between different representations
Require conceptual understanding

(4)Problem 
Solving

Non-routine problems (which are not necessarily difficult)
Higher-order reasoning and processes are involved
Might require the ability to break the problem down into its constituent parts

Table 2. Brief descriptions of items with original fit residual statistics, item location  
and cognitive levels

Item Item with comments (FR) Locn Cog lev

15 6.1.1 Identifying and using the correct formula to express trig ratio of cos -0,544 -0,363 2
16 6.1.2 Identifying and using the correct formula for double-angle -0,948 -0,218 2
17 6.1.3 Rewriting 4° as (32°- 28°) & applying correct compound angle formula -0,798 0,128 3
18 6.2 Using the correct double angle formula & finding a general soln. of 

a trig. eqn
-0,05 0,091 3

19 6.3.1 Identifying values of x for which the given trig expression undefined 0,325 0,569 3
20 6.3.2 Proving an identity by identifying & using a correct double-angle 

formula.
0,876 -0,135 3

21 7.1 Identifying and using the cosine rule using the correct triangle -0,627 -0,558 2
22 7.2 Identifying and using the sine rule to get the correct angle in the 

correct triangle
-0,01 -0,18 2

23 7.3 Using area formula correctly utilizing result in 7.1 -0,253 -0,335 1
24 7.4 Identifying that EF is EG + GF first & then using correct trig ratio 

for EG; etc
1,93 -0,334 2

25 8.1 Identifying period from the sketched graph - -1,487 -0,394 1
26 8.2 Working out the amplitude of the new function described in terms of 

the sketched function 
0,894 -0,372 2
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Initial category probability curves for Item 18 After rescoring Item 18

Question with marking memorandum 

Figure 4. Rescoring of an item with disordered thresholds

Table 3. Initial summary statistics

 
 

ITEMS [N=16] PERSONS [N=168]

Location Fit residual Location Fit residual

Mean 0.0000      -0.3827        -0.0800   -0.1050

SD 0.4937      1.0392          1.0157      0.6997

    Person separation index  0.85186

Item Item with comments (FR) Locn Cog lev

27 8.3 Sketching graph that has been translated 30 to the right + correct 
endpoints

-0,603 -0,239 2

28 8.4 Identifying the no. of intersection point for the two drawn graphs 
above

-2,019 0,509 2

29 8.5 Identifying the region for which the graph of g in 8.2 is on/above the 
X-axis. 

-1,762 0,561 3

30 Identifying regions for which f’(x) > 0 and g’(x) > 0 -1,047 1,271 4

and the person mean as- 0.0800. The standard 
deviation for the item location is 1.0392, which is 
just above the ideal value of 1, while the standard 
deviation of the person location is 1.0157, which 
is just above 1. 

The mean of the item fit residual (-0.3827) is 
close to zero. The standard deviation of the item 
fit residual is 1.0392, close to 1, showing that 
the fit does not vary more than expected. The 
mean of the person fit residual is approximately 
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-0.1050, showing that it is close to zero. The 
standard deviation of the person fit residual is 
0.6997, which is slightly smaller than 1, showing 
that the distribution of the person fit residuals is 
slightly more clustered than the ideal situation. 

The person separation index from Table 3 is 
over 0.85. This shows that the estimation of the 
person’s ability is consistent across the model. 
Based on this separation figure, one calculates 
the reliability as 0.683, which suggests that the 
test did not separate the persons as well as it 
could. 

In RUMM 2030, item fit z-score transformed 
residuals between ±2.5 are deemed adequate 
fit to the model (Pallant &Tennant, 2007). The 
initial analysis identified no items as having 
RUMM 2030 misfit statistics outside these 
recommended limits, as shown in Table 2. Each 
item was analyzed for the content and marking 
allocation, while the Item characteristic curves 
(ICC) and category probability curves (CPC)  
were also examined. Based on these analyses, the 
items were rescored post-hoc, where necessary.

The Item characteristic curves (ICC) and 
category probability curves (CPC)  for each item 
were also examined, and based on these, the items 
were rescored if such a rescoring was supported 
by the qualitative analysis. If a rescoring was 
suggested by the analysis and the rescoring 
was supported by the qualitative analysis, then 
the item was rescored. This rescoring process 
resulted in improved fit residual statistics overall. 
Figure 4 demonstrates an example of an item 
which initially had disordered thresholds and 
which improved after the rescoring.

The initial category curves in the first column 
of the first row in Figure 4 show disordered 
thresholds, which may signal that certain 
categories are not working well (Andrich, 2005). 
The categories corresponding to scores of 1, 2, 3, 
and 6 do not seem to be functioning as intended. 
At no point on the horizontal axis is a score of 1, 
2, 3 or 6 most likely. In such a situation (Andrich, 
2005) suggests a rescoring to try to eliminate the 
disordering of the thresholds. However, note that 
not all authors see the disorder of the estimated 
parameters as an indication of a misfit of data 
(Adams et al., 2012). In this situation, I followed 

the advice of Andrich (2005) in trying to resolve 
the disordered thresholds by first studying 
the marking rubric and checking if the mark 
allocation made sense. I first conducted a content 
analysis of the item and analyzed the rubric. I 
then rescored the item with a maximum score of 
3, as shown in Table 4.

As seen in the right-hand side of the second 
row of Figure 4, the rescoring resulted in 
ordered thresholds, showing that a higher mark 
required greater proficiency than a lower mark. 
By rescoring the item, the thresholds are able 
to contribute consistently to a scale to measure 
the construct of interest, which is teachers’ 
proficiency in trigonometry. In the RHS of Figure 
1, the thresholds and the categories they define are 
naturally ordered in the sense that the threshold 
defining the two higher categories of achievement 
is of greater difficulty than the threshold defining 
the two lower categories of achievement. The first 
threshold (τ1), which represents the point where a 
score of 1 becomes more likely than a score of 0, 
is about -1.1 logits. The second threshold, where 
a score of 2 becomes more likely than a score of 
1, is approximately 0.2 logits, whereas the third 
threshold is approximately 1.5. These thresholds 
show that progressively more ability is required 
to score 0, 1, 2 or 3 marks, respectively, on this 
item (Van Wyke & Andrich, 2006, pp. 13-14)

There were 14 polytomous items which 
indicated discorded thresholds, and these were 
also rescored based on a consideration of the 
scoring rubric. The rescoring resulted in an 
improved fit to the Rasch model, as the Person 

Table 4. Rescoring details for Item 18

Original score Revised score

0 0

1 0

2 1

3 1

4 1

5 2

6 2

7 3
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separation index improved from 0.85186 to 
0.86060, as shown in Table 5 below. None of the 
items displayed misfit. 

In terms of the distribution of the persons 
by ability, the distribution presented in Figure 
6 indicates a better balance than the original 
distribution represented in Figure 5. 

The items ranged from-0.558 to 1.271 and 
after rescoring  it was -1.060 to1.920, providing 
a greater spread. We can see that the SD for 
person locations has increased in the person-item 
location distribution from 1.01857 to 1.6918. 
The person locations ranged between ‒ 2.4 and 

2.2 logits and after rescoring the spread widened 
to between ‒ 3.53 to 3.05, thus providing greater 
discrimination of person proficiencies. In terms 
of the threshold distribution, the number of 
thresholds decreased from 47 to 23. By improving 

Figure 5. Original Person- item location 
distribution

Figure 6. Final person-item location 
distribution after rescoring 

Figure 7. Wright map showing item and 
person  location 

Key: L1- normal font; L2- bold+ italics; L3- 
yellow highlights; L4- green highlights

Table 5. Initial and final summary statistics

  
 

ITEMS [N=16] PERSONS [N=168]

Location Fit residual Location Fit residual

Mean 0.0000 (0.000)     -0.3827(-0,3045)        -0.0800(-0.2300)   -0.1050(-0.1943)

SD 0.4937 (0.8643)     1.0392 (1.0723)         1.0157(1.6918)      0.6997( 0.7783) 

    Person separation index  0.85186 (0.8606)

Figure 8. Instruction for Item 17
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the scoring rubric, there is a greater spread of the 
person difficulties; the test has still not separated 
the persons very well since there are many test 
takers who were not able to be ‘measured’ by 
the items, and since there are only 16 items, it is 
unlikely to produce good person separation even 
if they target the population better.

In terms of the empirical ordering of the 
items, there was a match between the predicted 
ordering according to the theoretical assessment 
taxonomy and the actual empirical ordering based 
on the Rasch analysis, with the items predicted 
at higher cognitive levels being generally higher 
than those at lower cognitive levels. However, 
not all items followed this trend. 

Item 27 was classified as a  Level 3 question, 
but empirically, the teachers found it easier than 
the Level 2 problems. It appears in Figure 8.

This may be because graph sketching is 
carried out mainly by using the calculator, so 
there is no need for the reasoning about the 
shifting of graphs that was expected. Another 
unexpected result was that of item 28, which 
was classified as a Level 2 item but empirically 
was experienced as more difficult than the other 
Level 2 items. It may be that the language was 
a problem, and people did not realize they were 
asking for the number of intersection points and 
not the intersection points itself.  

In looking at the Wright map,  one might discern 
three levels of items, as shown in Figure 10.

From Figure 6, we can discern three clusters 
of difficulty. The first one comprises items 30, 19 
and 29, which were level 3 and 4 items. Items 

30 and 29 were based on interpretation of the 
trigonometric graphs, which required teachers to 
coordinate two or more different representations. 
As noted by Duval, mathematical activity often 
requires the simultaneous mobilization of more 
than one register of representation. For example, 
given two trig graphs, they needed to work out 
Item 30, shown in Figure 11. 

Here, they needed to work with the graphical 
representation of two graphs while coordinating 

Figure 9. Instruction for Item 28

Figure 12. Item 20

Figure 11. Item 30

Figure 10. Wright map with three levels of items
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the algebraic representation, asking about the 
derivatives of the two graphs and simultaneously 
work out the intervals over which the two 
conditions were satisfied. This study shows that 
working simultaneously with these different 
representations registers was experienced as 
very difficult by the teachers. The results from 
the Grade 12 2021 mathematics examinations 
showed similarly that the items based on the 
interpretation of graphs were the most difficult 
for learners (SADBE 2020). 

The second cluster of items are those which 
required complex manipulation of trigonometric 
expressions based on algebraic rules and 
trigonometric relationships. These require 
coordination between the trigonometric and 
algebraic registers, for example, Item 20 below:

Item 20 required the identification of the 
most suitable identity for cos 2x, followed by a 
simplification of the trigonometric expressions 
using the algebraic register and treating the 
trigonometric expressions as variables.

The third cluster of items were the ones that 
were experienced as easiest, and these were 
mainly a combination of level 1 and 2 items. 
Generally, these items were based on simple 
manipulation of trig expressions, calculations 
and recall of formulae, e.g. “What is the period 
of the graph in the diagram?”.  

In terms of this cohort of teachers who took 
this test, there were few teachers who were able 
to cope with the items in the highest cluster. 
The difficulty estimate for Item 30 was 1.920, 
and there were only 19 teachers (11%) whose 
proficiency levels were higher than these, which 
means that they were easily able to cope with 
these items. This suggests that the teachers 
needed more opportunities to work with such 
trigonometric problems, which they will need to 
teach to their students. 

Of concern is the large number of teachers 
whose proficiency levels were lower than all of 
the items. There were 52 teachers who comprised 
30% of the group whose person location was 
lower than the item difficulty estimates of all 
the items. This confirms that trigonometry is 
experienced as a difficult section for learners and 
their teachers.

5. Conclusions
The purpose of this study was to use Rasch 

analysis to improve the functioning of the 
items in a trigonometry assessment done by 
teachers. Many of the items had disordered 
thresholds, meaning that the scores did not 
contribute consistently to a scale that measures 
their trigonometry proficiency. These items 
were rescored to resolve disordered thresholds. 
The rescoring resulted in an improved fit of the 
instrument. The study is significant because 
it shows the effect of redundant marks on the 
ordering of items according to difficulty. It may 
seem logical to allocate more marks for an item 
that is considered as difficult. However, when 
marks are redundant, the allocation of marks to 
the items in the measuring instrument does not 
communicate the proficiency of learners in a fair 
way. The marks do not contribute consistently to 
a scale in which we have confidence that it is able 
to represent the proficiency of students, where a 
higher location means that a person has a greater 
proficiency than a person on a lower level. As 
seen in this study, by improving the scoring 
rubric, the test has been able to distinguish better 
between items of different difficulty than the 
original one, thus providing a greater degree of 
precision. It is important to note, however, that 
the person separation was not very good, and we 
would need more items, especially at the upper 
and lower bounds of person achievement. This 
test has been able to identify the group of people 
at the bottom of the distribution, which is crucial 
to provide them with additional support in this 
area since they are struggling with most of the 
concepts.

The empirical ordering of the items, according 
to the difficulty of the Rasch model, generally 
supported the levels of difficulty according to the 
education department’s assessment taxonomy, 
where items categorized at lower cognitive levels 
were easier than those at higher cognitive levels.  

The study has identified that teachers may 
also struggle with the trigonometric concepts 
that they teach, which is a concern. It suggests 
that the education department needs to support 
teachers by offering workshops and professional 
development opportunities to practising teachers. 
This cohort of teachers struggled with higher-
level trigonometry questions, especially those 
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which required shifts between different registers 
of representations. As teachers who will be 
mediating this content with their students, it is 
important for them to be given further support in 
the content that they teach. Teachers need access 
to professional development programmes that 

can improve their trigonometry knowledge. 
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